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The sulfur-to-carbon bond cleavage by metal complexXds
a research subject of considerable scrutiny. The majority of the
research, however, is related to either the mechanism of desulfu-
rization of oiP or the cross-coupling reaction with nucleophiles
such as Grignard reagerit$¥/e wish to disclose that terminal
acetylenesX) undergo an addition reaction with the-8 bond
in PhSCOOMeZ) (Table 1), an entirely new entry to the addition
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Table 1. Phenylthioesterification of Terminal Alkyngs
R—== + PhS-COOMe — 0 C¥al2
3 2 10°C  Phs  COOMe
3
R product % yield selectivity

N-CeH1st 3a 86 98
n-C;Hg® 3b 96 94
CHged 3c 32 98
t-CsHo 3d 41 95
t-BuMe;Si(CH,).* 3e 86 94
MeOCH* 3f 73 84
(HO)Me,C 39 73 100
CI(CHy)3 3h 62 98
NC(CH,)s 3i 81 62
CesHsCH; 3j (+3j')¢ 35 (+63)

CeHs 3k 62 97
p-MeOGsH4 3l 63 97
p-FCGsHa 3m 55 94

reactions of heteroatom-containing boAé3he reaction furnishes
alkenyl sulfide linkages of versatile synthetic applicabifity.
3-Organothio-2-alkenoic acid esters in particular have been
involved as key intermediates in synthetic sequences of biologi-
cally important molecule%.

When2 (202.0 mg, 1.2 mmol) was added to a suspension of
Pd(PCy), (27.0 mg, 0.04 mmol) in octane (2 mL), the mixture
immediately became a pale-red homogeneous solution. 1-Octyn
(1a, 147uL, 1.0 mmol) was then added and the resulting mixture
was stirred at 110C over 20 h under N GC-MS and GC
analyses of the reaction mixture revealed the formation of methyl
(2)-3-phenylthio-2-nonenoate34)’ in 86% (based oria; 98%
regio- and stereoselectivit§)2)-1,2-bis(phenylthio)-1-octend;

2%, based oria),’ PhSMe (4%, based dhused), and dimethyl
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2 The reactions were carried out at 130 for 20 h by using 1.0
mmol of alkynes, 1.2 mmol of methyl phenylthiocarbon2tend 0.04
mmol of Pd(PCy), in a mixture solvent of 0.5 mL of toluene and 1.5
mL of n-octane” GC yield based on the alkynes used, with the
selectivity determined by GC.The reaction was performed imoctane.

4 Propyne: 1 atm, yield based @used.® 3]’ = methyl 3-phenylthio-
4-phenyl-3-butenoate.

carbonate (2%, based dm). Evaporation followed by column
chromatography on silica gel with hexane as eluent led to isolation
of 3a (71%) as a colorless oil.

The formation of PhSMe is due most likely to the phosphine-
catalyzed decarboxylatioff.On the other hand, byproduda
appears to have come from (PHSJ species, generation of which
presumably is relevant to the dimethyl carbonate formation (vide
infra). In practice, careful GC and GC-MS analyses of a PdMe
[PhP(CH,),PPh]-catalyzed reactioft which formed a relatively
large quantity o#la (21% yield, 0.21 mmol), revealed that nearly
the same quantity of dimethyl carbonate (0.23 mmol) was also
formed.

Use of a polar solvent resulted in a lower yield3afto reveal
the following trends: hexane (87% vyield &a) ~ octane
(86%) > toluene (67%)> dioxane (62%)> dimethoxyethane
(52%) > CHiCN (23%) ~ DMF (21%)1* The solvent effect
appears to be associated mainly with the decarboxylatid? of
which proceeds more readily in polar solveltideed, the extent
of the PhSMe formation increased as follows: hexane (6%6)
octane (4% toluene (7%)< dimethoxyethane (38%) dioxane
(43%) ~ CH;CN (43%) < DMF (69%).
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Other palladium complexes having either less basic or sterically
less demanding ligands, such as RPMePh, PhP(CH,),PPh,
Cy,P(CH,),PCy, and PMg, exerted inferior performance (36
6% yields of3a) in the addition reaction a2 to 1ain toluene!!
RhCI(PPR); and RhCl(cod)(PPj also catalyzed the addition
reaction to give3ain 11—-15%.

The Pd(PCy),-catalyzed thioesterification is readily applicable
to various alkynes (Table 1). Besides linear terminal alkynes,
sterically congested 3,3-dimethylbutyne also reacted, albeit slowly,
resulting in selective formation d8d. An exception was the
reaction of propyne, which accompanied extensive oligomeriza-
tion. Functionalities such as siloxy, methoxy, hydroxy, chloro,
and cyano groups bound to aliphatic alkynes were tolerated.
However, the reaction of 5-hexynonitrile was less selective to
give a mixture of isomers, among which the selectivitBtovas
only 62%?2 Worth noting in this respect is that a catalyst system
generated with a mixture of Pd(Pgyand ¢°-CsHs)(#73-C3Hs)-

Pd in a 1:1 ratio (i.e. Pd:PGy= 1:1) promoted the reaction of
5-hexynonitrile faster and more selectively (in 10 h, 73% yield
with 93% selectivity; in 20 h, 80% yield with 90% selectivity).
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Hydrogen atoms and solvated g, are omitted for clarity.

To look into the provenance dfa, we heated a mixture &
(0.025 mmol) an (5 equiv) in tolueneds (0.4 mL) at 110°C
for 10 h (process iv).'H NMR spectroscopy revealed the
formation of Pd(SPBJPCy), (7; 72% based orb), a large
quantity of PhSMe (0.094 mmol, 75% based2)nand dimethyl
carbonate (53% based 8 P NMR spectroscopy also displayed
a singlet at 19.8 ppm assignable %" If decarbonylation
incidentally occurs at an intermediate stage leading,®one
can expect the extrusion of dimethyl carbonate, which indeed was
observed. Accordingly we can safely conclude that comlex
which can be generated under the catalytic conditions, intercepts
1-octyne (process V) to forma as an undesired side proddct.

In conclusion, we have developed a simple and efficient
addition reaction of PhSCOOMe to alkynes. The process offers
a synthetically useful method to simultaneously introduce phen-
ylthio and ester functionalities, both of which can be elaborated
on in numerous applications.
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(14) Crystals for X-ray diffraction analysis were obtained by recrystalli-
zation from a mixture of ChCl, and CHOH at —20 °C. Crystal data for
-CH,Cl,: pale yellow crystals, monoclinic, space groepy/a, a = 20.329-
3) A, b=10.066(2) Ac’=23.082(1) Ajb = 92.610(7}, V = 4718(1) A&,

in Scheme 1. The oxidative addition (process i) indeed proceededy = 4, D(calcd)= 1.296 g/crd, fw = 920.41,4(Mo Ko) = 6.53 cm®. Ri=

at room temperature nearly instantaneously upon mixing Pd-
(PCy), and 2 (1.5 equiv) in hexane to afforttans-Pd(SPh)-
(COOMe)(PCy), (5). Its structure was fully characterized by
spectroscopy and confirmed by X-ray crystallography (Figuré 1).
Heating a toluenel solution of5 and 1-octyne (5 equiv) at 110
°C for 2 h, although extensive thermal decompositiord ddok
place, afforded3a in 26% yield, which verifies the processes
i + iii.’™> As expected, the reaction of 1l-octyne withwas
smoothly catalyzed b$ (4 mol %) to give3ain 85% vyield (94%
selectivity) under the standard conditions.
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been converted to PhSMe.
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